首页> 外文OA文献 >Identification of nonlinear systems with non-persistent excitation using an iterative forward orthogonal least squares regression algorithm
【2h】

Identification of nonlinear systems with non-persistent excitation using an iterative forward orthogonal least squares regression algorithm

机译:利用迭代正交最小二乘回归算法识别非持续激励非线性系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new iterative orthogonal least squares forward regression (iOFR) algorithm is proposed to identify nonlinear systems which may not be persistently excited. By slightly revising the classic forward orthogonal regression (OFR) algorithm, the new iterative algorithm provides search solutions on a global solution space. Examples show that the new iterative algorithm is computationally efficient and capable of producing a good model even when the input is not completely persistently excited.
机译:提出了一种新的迭代正交最小二乘正向回归(iOFR)算法,以识别可能不会持续激发的非线性系统。通过稍微修改经典的正向正交回归(OFR)算法,新的迭代算法可在全局解空间上提供搜索解。实例表明,即使输入没有完全持续地激发,新的迭代算法在计算上也很有效,并且能够生成一个好的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号